
Computational protein design

There are astronomically large number of amino acid 
sequences that needs to be considered for a protein 
of moderate size

e.g. if mutating 10 residues, 20^10 = 10 trillion sequences
but each residue has ~ 10 conformational dof

200^10 ~ Avogadro’s number

Computation can systematically evaluate the quality 
of different candidate sequences 

Computational analysis helps examine the consequence of a perturbation 
even when experimental validation is difficult or time consuming



Side chain modeling

Necessary for homology modeling, fold recognition, and folding

Identity and conformation of side chain determine protein stability and its 
interactions with other molecules 

Since the main chain is often assumed constant (or at least assumed 
known), side chain modeling is a large part of CPD

Computational docking
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Components of CPD
1. Force field 

compute the energy of a given structure 
different implementations with different functional forms
special force fields for special occasions, e.g. for membrane proteins
decide on the resolution—e.g. include hydrogen or not
solvation effects

2. Amino acid alphabet
how many different amino acids should be considered
smaller alphabet may simplify the design and increase the odds of success

3. Amino acid rotamer
how are amino acids represented computationally
amino acid has a backbone and a side chain 
side chain conformation should be restricted to a finite number of possibilities 

4. Search algorithm
stochastic or deterministic
efficiency, convergence



Force fields
The term “force field” is used synonymously with energy function
Relationship between geometric properties and energy (but enthalpy only)

Applications
• compute X-ray and NMR structures consistent with experimental data, 

e.g. electron density and distance constraints, while minimizing energy
• quantitate the stability of a residue conformation—useful when planning a 

mutagenesis study
• estimate/evaluate the energy of interaction—i.e. binding affinity—critical 

during computational drug design
• molecular modeling—either homology/side chain modeling or molecular 

dynamics and Monte Carlo simulations 



Derivation of force fields

Ab initio quantum mechanical calculations
– “first principle” calculation
– solution to the Schroedinger equation 
– pros: self-contained, model-independent (other than how one solves the 

equation), requires few assumptions regarding the functional form
– cons: extremely time consuming, accuracy not as high as desired, severe 

limitation on the size of the system that can be studied together (~100 atoms), 
calculation done in gas phase not in condensed matter phase

Empirical force fields
– parameterized to reproduce experimental data
– several popular force fields (ff) have been independently developed

Statistical force fields
– does not correspond to a physical force but included to represent various 

statistical biases in nature
– crude model of interactions that are too difficult to represent accurately

lH Eψ ψ=
Chemistry Nobel 1998



Empirical force fields

• Amber, CHARMM, OPLS, GROMOS
• each ff models interactions using different functional forms
• may represent every atom separately (“all atom” representation) or only 

heavy atoms plus polarizable hydrogens (“united atom” representation)
• compromise between speed and accuracy—united atom is faster
• all have bonded and non-bonded terms

all atom vs. united atom representations



CHARMM

• Chemistry at HARvard Molecular Mechanics
• Current release is for all-atom representation
• Different ff for proteins, carbohydrates, nucleic 

acids, lipids, etc
• In the most basic form, contains six terms to describe biomolecular

structure

MacKerell, J Comp Chem 25, 1584 (2004)
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TIP3PSPC/ESPCModel

• different models of water (e.g. TIP3P, TIP4P, SPC, extended SPC/E)
• TIP3P: electrostatic interaction truncated at 8.5 Å
• ff need to be developed with the solvent molecule in mind

tip4p water model
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Refinements

Lone pair electrons to improve hydrogen bond prediction
Coupling between internal coordinates

e.g. as angle decreases, the bond length increases
Anharmonic term to better reproduce vibrational spectra
Hyperconjugation and electronegativity
Modification of non-bonded Lennard-Jones term

e.g. 12-6 9-6, addition of 14-7 term
Polarizability of atoms

fluctuating charge in CHARMM to capture polarizability
off center charge in AMBER

1-4 interaction may be scaled or not

pol i iU Eμ= − •∑

1-4 interaction 



Statistical potential

Existing protein structures already contain a vast amount of information 
correlating sequence with structure 

This information may be extracted by creating a “knowledge-based 
potential (KBP)”, i.e. a database-driven energy function, based on the 
frequency of different structural arrangements

KBP may complement empirical ff during protein design, protein folding, 
and ligand binding analysis

– Poole and Ranganathan, COSB 16, 508 (2006)
– Buchete et al, COSB 14, 225 (2004)
– Gohlke and Klebe, COSB 11, 231 (2001)

Users are allowed to introduce potential terms based on experience
e.g. helix propensity, solvent exposure  



Boltzmann hypothesis

The specific interaction in the database of known protein structures 
occurs with a frequency that depends on its free energy according to the 
Boltzmann distribution 

probability(y) ~ exp( - free energy (y) * constant)

organic/water 
transfer energy
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Extracting and applying KBP

Structural features that may obey the Boltzmann hypothesis include:
hydrogen bonds, hydrophobicity, proline isomerization, internal cavities, side 
chain-side chain interactions, and interactions at the level of specific atom types

one set of
proteins 

(e.g. from db)

statistical potential 
energy function (KBP) 

derived from the 
probability distribution 

predict probability 
distribution in
another set

create a potential to 
favor the more commonly 
observed conformations 



Rotamer

Different side chain conformations are not found in equal distribution over 
the dihedral angle space but tend to cluster at specific regions of the space

The set of side chain dihedral angles corresponding to a local energy 
minimum is called a rotamer (short for rotational isomer)

e.g. one rotamer of Leu = (60°, -60°)
non-rotamer of Leu = (60°, 0°)
Ala has one rotamer
Lys has 81 rotamers

Bond length and angle are presumed fixed

Discretization of the side chain dihedral degrees of freedom simplifies the 
sequence search—standard practice for computational protein design

g(-)

trans
g(+)

serine chi1



Rotamer library

Rotamer library is a collection of all rotamers of all amino acids
contains dihedral angle information and probability of each

May or may not depend on the backbone conformation

Dunbrack, COSB 12, 431 (2002)



Backbone independent library

No.No. χ1 p σ p|χ1 σ χ1 χ2 σσ

Lovell rotamer library
• backbone independent
• http://kinemage.biochem.duke.edu/databases/rotamer.html



Backbone dependent library

Side chain rotameric probabilities are compiled separately for each 
phi/psi main chain angle pairs

φ ϕ p χ1 χ2 χ3 χ4

Dunbrack rotamer libraries 
• backbone-independent and backbone-dependent
• http://dunbrack.fccc.edu/bbdep/bbdepdownload.php

dihedral angles are not always as we might 
expect them to be—true for both backbone-
independent and backbone-dependent libraries



Search algorithms

CPD requires evaluating the compatibility of a sequence with the target 
structure by calculating the interaction energy based on a force field

For each proposed sequence, all possible side chain conformations must 
be considered

energy

sequence * conformation

energy minimum: good sequence 
and good conformation

not a good sequence or 
a wrong conformation or both



Stochastic v. deterministic

Stochastic search traces a search path that is inherently random
– Each time the search is conducted, it’ll proceed through a different 

sequence of events
– Relies on a large number of queries to identify the minimum energy 

configuration

Types of stochastic search used in protein design
• Monte Carlo, Monte Carlo with Metropolis cut
• Simulated annealing
• Genetic and evolutionary algorithms
• Tabu search



Monte Carlo search

• Initialize the system by assigning an amino acid to each residue position 
and also choosing a rotamer state for the amino acid

• Choose the next potential configuration at random (e.g. picking a random 
number and mapping it to a new sequence and/or conformation)

• Accept the move and re-initialize the system or reject the move based on 
whether the new proposed configuration has a lower energy 

• Systematically lower the total energy
• There are virtually an infinite number of different ways of lower the energy
• After a while, the number of failed attempts between successful tries may 

increase dramatically, making the search highly inefficient 



E

Search the phase space

Ideally, we would like to find the minimum energy configuration 
regardless of the initial conditions



Getting trapped in local minima

Search may come to a grinding halt after getting stuck in a local minimum

rugged energy landscape

present position

Solution
Accept the moves according to the “Metropolis” rule

whatever you do, you end up 
raising the energy of the system, so 
the search never moves forward 
from the present position

0<ΔEIf accept the move—as before 

0EΔ >If also accept the move but with a probability  TK
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This modified search still has a major flaw
Applying the Metropolis criteria can spoil the search by abandoning a 
good solution that was difficult to find in the first place (i.e. took many 
tries to get to this solution) for a suboptimum solution

present solution

new solution that was accepted by the Metropolis criteria 

Pick a random real number x between 0 and 1
If 
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acceptance probability = exp
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Simulated annealing

Annealing is a process in which the microstructure of a 
material is altered by heating followed by a gradual 
cooling in order to change its strength and hardness 

Gradual cooling allows individual atoms to avoid internal stress and seek 
out the ground energy state 

Simulated annealing (SA) starts by “heating” the system under investigation 
and gradually lowers the temperature, while resolving internal conflicts 
through evaluation of an appropriate metric

Applications of SA
Traveling salesman problem and other NP-hard optimization problems
Controlling the movement of a robotic arm to move a glass
Pinpointing the position of a sniper by the supersonic boom created by a bullet

Kirkpatrick et al, Science 220, 671 (1983)



Protein design by SA

Protocol
1. Initialize the sequence and conformation as in Monte Carlo
2. Randomly suggest a change in sequence and/or conformation 
3. The new “solution” is accepted according to the Metropolis criteria
4. The temperature in the Metropolis cutoff (i.e. exp(-ΔE/kT)) is gradually 

lowered, which has a consequence of making it more difficult to 
accept an energetically unfavorable move at a later stage of design

Designing protein by SA depends critically on
– energy function 
– cooling schedule

Commonly used cooling schedule : kT ~ 1/N, where N is # of simul. step
Energy function : combination of empirical and statistical potential



Setting the initial temperature high allows different parts of the phase 
space to be efficiently sampled

Progressively lowering the temperature prevents a good solution from 
being accidentally discarded as in the standard Monte Carlo simulation

simulation step

range of energy 
permissible given the 
ambient temperature
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Genetic and evolutionary algorithms

Theory of evolution according to Darwin is based on 
the survival of the fittest

Essential elements of Darwinian evolution
– mechanism of diversity generation

» random mutation
» genetic recombination

– selection based on fitness criteria
– reproduction

Genetic algorithms (GA) and evolutionary algorithms (EA) are computer 
simulations of the evolutionary process in order to optimize an arbitrary 
fitness function, e.g. energy function 



Nomenclature

• Collection of individuals: population
• Individuals and the genetic information they carry: genes (real life) and 

chromosomes (GA/EA)
– chromosomes represent potential solutions

• Representation of information: string of integers (binary or not) or a real 
number

• Fitness evaluation: energy function—problem-specific

100101011001011001…

entire population

1110101101100110…

individuals
= chromosome



Representation of sequence in GA

• Represent the proposed amino acid sequence as:
string of 1’s and 0’: 1001010101100110…
there are 20 amino acids and ~200 rotamers per position
use 8 bits per position

10010101  01100110…

some amino acids are over-represented
but it may be possible to encode “closeness” by 

grouping amino acids on a binary tree

• Alternatively, represent the sequence as: 
S1-S2- … - Sm

where Si is the amino acid at the i-th position (as usual)

• Make multiple copies of these “chromosomes”—typically ~ 100 copies

residue 1 residue 2

hydrophobic hydrophilic

large small





Schema

Evaluate the “fitness” of each 
chromosome (i.e. sequence)

if the interaction energy is used as a 
metric, a sequence with lower energy 
(i.e. more stable) has a higher fitness

Rank order chromosomes based on their 
fitness

chromosomes that are ranked higher will 
have a better chance of “survival”

Mutate and recombine (described next)

Replace the least fit individuals with 
these next-generation chromosomes



Cross-over (recombination) 
– pick two chromosomes from near the 

top of the ranking (e.g. top 20%) 
– pick a cross-over point 
– swap the string to the right of the 

cross-over point
– need to optimize the rate of 

recombination

Multiple points cross-over is also possible
but the advantage is not clear

Diversity generation



Mutation : for each chromosome, mutate the value at a randomly selected 
position to something else

Optimizing the rate of mutation is non-trivial
low rate of mutation may slow the search process too much
high rate of mutation may ruin successful search
possible solution: lower the rate of mutation with iteration
e.g. 1% mutation rate means an average of 1 mutation per 100 amino acids for 

each chromosome

…

…



Downloadable, GA-based protein design algorithm 



(Self-consistent) mean field theory

The number of potential solutions is much too large to enumerate

Avoid combinatorial explosion by replacing all interactions to any one 
body with an average interaction from the rest—essentially converts a 
many-body problem to a one-body problem

Use of mean field theory (MFT) in protein engineering
conformational optimization
structure prediction on a lattice
loop construction in protein homology modeling
sequence design 
side chain modeling



Mean field energy
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scads
Statistical, computation assisted design strategy – J. Saven (U Penn)
Implementation of mean field calculation

Compute the probability distribution of residues at each randomized 
position by maximizing a quantity that looks like informational entropy

protein states
log( )

protein states = residue identity + rotameric state

aa aaS p p= − ∑


